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The analog of Whitham’s law of conservation of wave action density is derived in 
the case of Rayleigh instability waves. The analysis allows for wave propagation in 
two space dimensions, non-unidirectionality of the background flow velocity profiles 
and weak horizontal nonuniformity and unsteadiness of those profiles. The small 
disturbance equations of motion in the Eulerian flow description are subject to a 
change of dependent variable in which the new variable represents the pressure-driven 
part of a disturbance material coordinate function as a function of the Cartesian 
spatial coordinates and time. Several variational principles expressing the physics of 
the small disturbance equations of motion are presented in terms of this new variable. 
A law of conservation of ‘bilinear wave action density’ is derived by a method 
intermediate between those of Jimenez and Whitham (1976) and Hayes (1970~).  
The distinction between the observed square amplitude of an amplified wavetrain 
and the wave action density is discussed. Three types of algebraic focusing are 
discussed, the first being the far-field ‘caustics’, the second being near-field ‘movable 
singularities’, and the third being a focusing mechanism due to Landahl(l972) which 
we here derive under somewhat weaker hypotheses. 

1. Introduction 
The present work is a contribution to the theory of inviscid shear-flow instability 

waves, particularly those whose dynamics are governed locally by the Rayleigh 
stability equation. Our main concern will be the effects of weak non-uniformity and 
unsteadiness of the parameters of the wavetrain (such as frequency and wavenumber) 
on the evolution of the local square amplitude of a train or packet of such waves. 
A comprehensive presentation of the theory of Rayleigh waves may be found in the 
article by Drazin & Howard (1966). Most of the results derived there apply to 
constant-parameter wavetrains, the formulation of the initial-value problem by a 
Laplace transform method being a notable exception. 

Employing the nomenclature of Hayes (1970a), we regard the set of independent 
variables in the set of partial differential equations describing some physical problem 
as the physical space. The physical space is the product of a propagation space and 
a cross space, where the propagation space is the set of independent variables upon 
which solutions may exhibit the kind of oscillatory behaviour associated with wave 
motion. If the propagation space of a system coincides with its physical space, then 
the waves are called local waves. Otherwise, they are called modal waves. Shear-flow 
instability waves, since they do not propagate in the direction transverse to the 
undisturbed flow, are modal waves under this classification. 

The theory of weakly non-uniform linear dispersive waves presented in chapter 11 
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of Whitham (1974) is concerned, for the most part, with conservative systems of local 
waves, where for present purposes we regard a conservative system as one whose 
dispersion relation (relating frequency to wavenumber) involves only real quantities. 
I n  the absence of modifications, therefore, Whitham’s 1974 theory is not applicable 
to shear-flow instability waves which are modal and nonconservative. 

Whitham’s variational method for the analysis of amplitude propagation is 
extremely attractive, however, and suggests that  a modification to the theory to  
allow for non-conservative modal waves would be of value. Hayes (1970~) has 
presented an  alternative variational method for analysis of amplitude propagation 
which allows for waves of modal type, though the restriction to  systems governed 
by a real dispersion relation is retained. 

Local waves in linear problems will be conservative if the orders of the partial 
derivatives in the partial differential equations of motion are all even or all odd (if 
a term in the equation of motion involves a mixed partial derivative, we regard the 
total order of that term as the relevant one for present purposes). Conversely, local 
waves will be non-conservative only if there exists a t  least one ‘dissipative’ term 
which is identified by its non-conformity to  the ‘all even or all odd’ rule. Jimenez 
& Whitham (1976) have presented a modified version of Whitham’s variational 
method that allows for dissipative terms of this type. 

Rayleigh waves, by contrast, are non-conservative for reasons which have no 
direct relation to any explicit dissipative terms in the equations of motion. They are 
modal waves whose equation of motion in the cross-space variable (i.e. the Rayleigh 
stability equation) exhibits regular singular points of logarithmic type (i.e. ‘critical 
layers’). If the curvature of the mean velocity profile is non-zero a t  a critical layer, 
a t  least one homogeneous solution (say 9,) must exist whose derivative has 
discontinuous imaginary part across it. The typical manner in which such increments 
in Im {$;(y)} are reconciled with homogeneous boundary conditions is to  admit 
appropriate complex parameters in the Rayleigh equation. Thus, i t  is the complex- 
valued increments of the homogeneous solutions rather than any explicit dissipative 
terms in the equations of motion that accounts for complex numbers in the dispersion 
relation. 

Extensions of Whitham’s method to  allow for non-conservative wavetrains whose 
non-conservative character is due to logarithmic singularities in the differential 
equations of motion in the cross-space have not appeared in the literature. The 
present contribution, which incorporates many of the ideas of Hayes (1970~) theory 
of conservative modal waves with Jimenez & Whitham’s (1976) theory of non- 
conservative local ones, is meant t o  supply such an extension. 

At least two effective methods of analysis have been applied by previous investi- 
gators to the problem of amplitude propagation in shear-flow instability waves. I n  
one approach (cf. Chin 1980; Landahl 1982), the complex dispersion relation 
expressing frequency as a function of wavenumber in the stability problem is taken 
as the starting point. By appeal to the Fourier integral theorem, the relationship 
between an initial wavenumber distribution function and the dependent variable @ 
in an associated physical problem may be written down (as is done, for example, in 
classical applications of the method of stationary phase, cf. Lighthill 1978 53.7). 
Expanding the dispersion relation in a complete Taylor series in the wavenumber, 
an infinite-term partial differential equation for y? may be derived. Chin (1980) 
applied the WKBJ method to  the solution of the equation for $ and succeeded in 
analytically summing (to a few orders in the WKBJ expansion) the infinite series 
associated with the original power-series expansion in the wavenumber. Among the 
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results derived by Chin was an equation for the propagation of the local square 
amplitude of a slowly varying wavetrain. 

The second main approach to amplitude propagation in shear waves is the one 
represented by the work of Nayfeh (1980) and Itoh (1980,1981), which we will call ‘the 
direct asymptotic approach’. In  this approach, no use is made of the Fourier integral 
theorem. Solutions of the small-disturbance equations of motion are sought directly 
in the form of slowly varying wavetrains by either a WKBJ approximation (in Itoh’s 
approach) or by a multiple scale expansion (in Nayfeh’s). In each case, the 
lowest-order balance in the equations of motion leads to the homogeneous two-point 
boundary-value problem (involving derivatives with respect to one cross-space 
variable) that would normally be encountered if non-uniformity of the parameters 
of the wavetrain were ignored. The next higher-order balance involves the solution 
of an inhomogeneous equation (or a set of equations) whose homogeneous operator 
is the same as that of the lowest-order problem. Non-trivial solutions of such 
inhomogeneous problems (subject to the usual homogeneous boundary conditions) 
will exist only if a certain solvability condition is satisfied and this solvability 
condition has been manipulated by Itoh and Nayfeh to yield the propagation 
equation for a second-order amplitude measure. This second-order quantity is a 
bilinear form in the amplitude of the solution of the small-disturbance equations of 
motion and the amplitude of the solution of the set of equations ‘adjoint’ to the 
small-disturbance equations. 

Landahl (1982) applied Chin’s method under a modified hypothesis designed to 
improve the accuracy of the approximation in the far field. This analysis was 
restricted to the case when the dispersion relation does not depend explicitly upon 
the propagation space coordinates. The main modification was to incorporate a 
convention (proposed by several other authors, including Nayfeh 1980) that the 
relevant cut of the complex dispersion relation in analyses of amplitude propagation 
is the one which renders the derivative of the frequency with respect to the 
wavenumber a real quantity. This cut yields complex values for both the frequency 
and the wavenumber and defines a mixed temporal-spatial instability problem with 
an unambiguous real group velocity. If proper care is taken to distinguish between 
each author’s working definition of amplitude, one finds that the amplitude propaga- 
tion equations of Itoh (1980), Nayfeh (1980) and Landahl (1982) are all compatible. 
We will return to the discussion of the proper definition of amplitude in $6 below. 

Whitham’s approach to the analysis of amplitude propagation has been a valuable 
complement to other methods wherever it has been applied. The main obstacle to 
its application to shear-flow instability waves has been the lack of a simple usable 
variational statement of the basic physics which application of Whitham’s method 
requires. 

Eckart (1963) and Seliger & Whitham (1968) both present general variational 
statements of the equation of motion of an inviscid compressible fluid. Eckart’s 
formulation involves the use of the Lagrangian flow description. Two transformations 
of variables are introduced, one relating the ‘present ’ position coordinates of a fluid 
particle in the undisturbed flow to the initial position coordinates of the particle, and 
another relating the present position coordinates in the disturbed flow to those in the 
undisturbed flow. No simplifications for small disturbances are introduced and the 
analysis, being a general one, is cumbersome. Seliger 6 Whitham (1968) present a 
variational principle in the Eulerian flow description which involves the use of 
‘ Clebsch potentials ’. That formulation, however, involves the use of variables that 
are difficult to relate to those usually employed in the Rayleigh stability problem. 
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Hayes (19704 has presented the small disturbance counterpart to Eckart’s 
equations. 

In $2, we derive the equations of motion for small disturbances to an inviscid shear 
flow in the usual way, allowing however for the complicating effects of weak 
unsteadiness and non-uniformity of the disturbed flow and of non-unidirectionality 
of the horizontal velocity profiles in it. We take the occasion to define a reference 
flow flatness parameter E~~ which will be useful in the following. In $3, we introduce 
a change of dependent variable which reduces the small-disturbance equations of 
motion to a form more easily recognized as the Euler equations of a variational 
principle. In $4, we present four variational principles all of which express the basic 
physical content of the small-disturbance equations of motion. The flow description 
is the Eulerian one, and the connection between the variables appearing in the 
variational principles and the variables normally employed in the Rayleigh instability 
problem is simple and direct. 

In $5,  we derive a conservation law for a ‘bilinear wave-action density’ which 
appears to be the closest analog of Whitham’s law applicable to inviscid shear waves. 
We digress briefly in this section to confirm that the Euler equations of the 
phase-averaged variational principle lead, as one might expect, to the familiar 
Rayleigh stability equation. Some of the ideas of kinematic wave theory (cf. Hayes 
1970b) are exploited in this section to obtain approximate solutions for the 
downstream evolution of the bilinear wave action density along a wave ray. In this 
section, we identify two types of near-field focusing, one of which is due to 
non-uniformity of the initial wavenumber distribution function for the wavetrain, 
while the other is due to non-uniformity of the background flow and is, in its 
consequences, identical to that described by Landahl (1972). 

The manner in which the observed square amplitude may be defined in wavetrains 
capable of undergoing both dispersion and exponential amplification and decay is 
discussed in $6 where we propose that the bilinear wave-action density is an 
appropriate measure of the factor in the general formula for the observed square 
amplitude associated with amplitude changes by dispersion. 

2. Small disturbances to a flat reference flow 
Let (z,, z2, x3) be a right-handed Cartesian coordinate system and let { E l ,  E,, .i3} be 

the associated set of orthonormal basis vectors. We suppose that the plane IC, = 0 
corresponds to a rigid impermeable plane wall. Let (U , ,  U,, U,) be the components 
of the velocity field of a reference-flow solution of the inviscid incompressible 
uniform-density equations of motion and let P be the associated pressure field. Let 
(U,  + ul, U,  + u,, U, + us) and P+p denote the components of the velocity field and 
the pressure field of a neighbouring flow solution of the equations of motion. 
Subtracting the reference flow equations from the neighbouring flow equations yields 
the equations for the disturbances, namely 

3 9  
- = 0. 

(2.la) 

(2.1 b )  

We now restrict attention to the case where the reference flow is of thin shear-layer 
type. Specifically, if ( l , ,  I , ,  13)  denote typical lengthscales relative to which the 
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reference-flow velocity field varies significantly in the xl, x2 and x, directions 
respectively, then we will say that the reference flow is 'flat ' if the small parameter 
erf defined by 

(2.2) 

Let (Ql, Q2, Q,) denote velocity scales representative of the magnitudes of the 
components of the reference-flow velocity field. It follows from the continuity 
equation for the reference flow and the impermeable-wall boundary condition that 

Brf I Z2[Z12 + 1,234 
satisfies Erf 4 1 .  

Q2 z2[Qi/li Q5//3I 

9 Z2[Qt + Q 3 4  [Z;2 + z,2$ 
= ~*.i[Ql+ Q:P. 

For brevity, we introduce the unsubscripted symbols 1 and Q defined by 

Then, by employing elementary scaling arguments, we arrive at the order-of- 
magnitude estimates 

U, N Qe$, (2.5) 

We assume that the above order-of-magnitude estimation rule may be applied 
inductively. That is, each additional derivative of a reference-flow velocity component 
introduces an additional factor erf/Z2 (if the variable of differentiation is x1 or x3) or 
a factor 1/Z2 (if the variable of differentiation is x2) to the existing order-of-magnitude 
estimate of that velocity derivative. Let 7 be a timescale representative of the 
shortest of those over which the reference-flow velocity field varies significantly. We 
restrict attention to the case in which 

We then have 

If in equations (2.1 a, b) for the disturbances, we ignore terms containing the factor 
Qerf and define an overall disturbance-amplitude measure eq by 

max b, u,} 
€2 = 
Q -  Q2 

then, the disturbance equations reduce to 

a au3 - + Ul - + U3 - u, + u - Sit +- a,,) = -1 * + O(er,, e i ) ,  ( 2 . 9 ~ )  
( i t  axl ax, a 1 az2 P 3% 

(2.9b) 
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3. A change of dependent variables 
Equations (2.9a, b) are not yet in a form that may be recognized as the Euler 

equations for a variational principle. Such a form may be obtained from (2.9a, b) by 
a simple change of variable. Let A, = Ai(xi, t )  denote a solution of the equations 

subject to the initial conditions 
A, = x i  at  t = 0. 

(3.1 a )  

(3.1 b) 

Let A, + a, satisfy the neighbouring flow equations 

( 3 . 2 ~ )  
a a 

( A , + a , ) + ( U , + q  - (A,+a,) = 0, axj 

subject to the initial conditions 

A,+ai = xi at t = 0. (3.2b) 

Then, by subtracting the reference-flow equations (3.1 a, b) from the neighbouring 
flow equations (3.2a, b), the equations for the disturbances result, namely 

(3 .34  

subject to a, = 0 at t = 0. (3.3b) 

If we employ our reference-flow flatness hypothesis to (3.1 a), then i t  reduces to 

which has the approximate solution 

Ai = 2, - u, a,, t -  u, s,i t +  O(Erp), (3.4) 

[which also satisfies the initial condition (3.1 b)]. 

hypotheses wherever possible, we get 
Substituting (3.4) into ( 3 . 3 ~ )  andemploying both the flatness and small-disturbance 

a )  (E: au3 ax, ) 
a 

C t  ax, ax, 
-+ u, -+ u, - a,+u$-u, - a,, +- s,i t = O(Brf,  €i). 

The above equation may be rearranged to yield a formula for ui in terms of the 
remaining quantities, giving 

a a 
ui = - -+ u, -+u - 

G t  ax, 3ax,>ai 

+a, ax, ~%3,,+-s,i au3 ax, ) +O(Erp,E;). (3.5) 
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This equation may be employed to eliminate the disturbance-veloci ty components 
uz from the small-disturbance equations of motion (2.9a,b). We find that the 
momentum equation ( 2 . 9 ~ )  reduces to  the form 

(3.6a) 

and the continuity equation (2.9b) takes the form 

The forms (3.6a, b) suggest that we regard the quantity in square brackets as a single 
entity. Accordingly, we introduce the shorthand 

b, = a,+a, (2 S,,+s 6,) t .  
3x2 

Another shorthand which will be useful is 

11 

a 
- + U , - + U  at ax, sax, 

re lsd ( ) is a mnemonic for linearized substantial derivative. 2 In view of the definition (3.7), the initial condition (3.3b) becomes 

b, = O  at t = 0. 

Equation (3.6b) now takes the form 

(3.7) 

(3.8) 

(3.9) 

which has the approximate solution 

where f is a differentiable function of three arguments. Applying the initial condition 
(3.9), we conclude that f must be zero. I n  our shorthand notation, the momentum 
and continuity equations now become 

(3.10a, b )  

I n  summary, equations (3.10a, b) are equivalent to the more familiar equations of 
motion (2.9a, b) for small disturbances to a flat reference flow. The former follows 
from the latter by the change of variable 

(3.11) 

[which is a rewriting of (3.5) in the shorthand defined by (3.7) and (3.8)]. 

2 Y L M  170 
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4. Variational principles 

Let D denote the region of three-dimensional space interior to  the right circular 
cylinder Y whose boundaries are t,he planes x2 = 0 and x, = h and the cylindrical 
surface x:+xg = R2, where h and R are given lengths. Let to and t, be given times. 
Consider the variational principal 

4.1.  Variational principles in  physical variables 

6 jJJD It: [:lsd (b j )  lsd (b,) dt dx, dx, dx, = O(erf, e i ) ,  (4 .1)  

in which the three components (b , ,  b,, b,) and p are regarded as independently 
variable. We suppose that b, is given prescribed values on the surface x: + x: = R2 
and that b, is given prescribed values on the surfaces x2 = 0 and x2 = h. We also 
suppose that b, is given prescribed values a t  the temporal endpoints to and t,. The 
variations of b, must then be zero on those surfaces and a t  those times where its 
values are prescribed. Carrying out the usual operations of variational calculus 
including integration by parts and use of arbitrariness of the test functions Sb, and 
Sp throughout the interior of D and using the flatness hypothesis wherever possible 
to ignore the derivatives of U, and U, with respect to x1 and x,, and t ,  we find that 
the Euler equation corresponding to independent variations with respect to b, is the 
momentum equation ( 3 . 1 0 ~ )  and the Euler equation corresponding to independent 
variations with respect to p is the continuity equation (3.10b).  

The variational principle (4 .1)  is tlhe most direct variational statement of (3 .10a,  b) ,  
but i t  is not the only one. Another principle which expresses the same physics but 
which we will find more useful when we substitute trial solutions in the form of 
slowly varying wavetrains, which may experience exponential growth or decay 
along the ray, is the bilinear variational principle 

6 JJJa 1; [ lsd (b,) lsd (&,) - dt dx, dx, dx, = O(erf, e i ) ,  (4 .2)  

in which the eight quantities (b l ,  b,,b,), (&,,&,,&,), p, and #z are all treated as 
independently variable and where the surfaces and times where b, and 8, take 
prescribed values are the same as those listed earlier for b, in the variational principle 
(4 .1) .  

The Euler equations of the principle (4 .2)  corresponding to  independent variations 
of the script-type variables S(&,) and S ( f i )  are equations ( 3 . 1 0 ~ )  and (3.10b) respect- 
ively. The Euler equations of (4 .2)  corresponding to  independent variations of the 
italic variables S(b,) and 6(p) are 

(4 .3a,  b)  

respectively, which are equivalent to (3.10a, b) .  
There are many circumstances in which a single equation for a single unknown is 

more useful than a set of equations for a set of unknowns. Thus, if one starts with 
the conventional form (2 .9a ,  b)  of the small-disturbance equations of motion, it is 
possible to  operate on the original set of four equations to eliminate the variables 
u,, us, and p, leaving a single higher-order equation for u,. In a like manner, we may 
operate on the system (3.10a, b) to eliminate b,, b,, a n d p  leaving a single higher-order 
equation for b,. The latter equation for b, may be expressed in variational form in 
at least two ways. These two variational principles for the b, equation are equivalent 
in the same sense that the variational principles (4 .1)  and (4 .2)  are (i.e. one involves 
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the use of both 'script ' and 'italic ' test functions while the other involves only 'italic ' 
functions). 

Thus if the operator 
a a 

6 -+a,,- 
ax, ax, 

is applied to (3.10a) and if (3.10b) is substituted in the form 

we get (4.4) 

Eliminating the pressure between this equation and the middle component of 
(3.10a), i.e. 

lsdS b , - L  p) = O(erf, e i ) ,  
3x2 P 

we get 

Consider the variational principle 

6 JJJD J]:' lsd r:) lsd r:) dt dx, dx, dx, = O(erf, e i ) ,  

(4.5) 

(4.7) 

in which 8b,/axj is given prescribed values on the cylindrical surface x: +xi = R2 and 
the temporal endpoints to and t,, and b, is given prescribed values on the cylindrical 
surface x: +xi = R2 and on the planes x2 = 0 and z, = h. Under these conditions, the 
Euler equation corresponding to arbitrary variations of b, in the interior of D is 
equation (4.6). 

The bilinear counterpart of (4.7) is the principle 

in which ab,/ax, and 38,/3x, are given prescribed values on the cylinder x: + xi = R2 
and at the temporal endpoints to and t,, while b, and 8, are given prescribed values 
on the cylinder x; + x: = R2 and on the planes x, = 0 and x, = h. The Euler equation 
corresponding to independent variations of &, is (4.6) while the Euler equation 
corresponding to independent variations of b, is 

4.2. Slowly varying wavetrains 
Let 8 be a scalar function (possibly complex valued) of the real variables xl, x3 and 
t. We will say that His  a slowly varying quantity relative to a wavetrain with phase 
function 8 if the second term on the right-hand side of each of the identities 

(4.10) 

(4.11) 

2-2 
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is of uniformly small magnitude compared to  the magnitude of the first term. We 
will call the product H exp ( +i6) a slowly varying wavetrain only if two conditions 
are met : 

(i) H is slowly varying in the above sense ; 
(ii) All of the various higher-order partial derivatives of H and 6 with respect to 

We now substitute test functions in the form of slowly varying wavetrains into 

( 4 . 1 2 ~ )  

the variables x,, x, and t are slowly varying in the above sense. 

the bilinear variational principle (4.2). Specifically, we let 

b, = 2 Re {it eis} = it eie + b": e-is*, 

(4.12 b)  

(4 .12~)  

# = 2 Re = &-is+ &*eiB*, (4.12d) 

in which all of the quantities with an overhead tilde are (in general) complex-valued 
functions of the real variables x,, x,, x, and t and the asterisk denotes 
complex-conjugation . 

Let 8, be the wavetrain non-uniformity parameter which measures the size of the 
second term on the right-hand side of (4.10) or (4.11) compared to that of the first. 
Then, the dominant parts of the various factors in square brackets in (4.2) are 

lsd ( b j )  = ij lsd (i6) eis + b"? lsd ( - i6*) e-ie* + O(E,),  

1sd (dj) = ij lsd (-it?) e-ie+ e"? lsd (i6*) eis* + O(s,), 

It follows that 

lsd (b,) lsd (8,) = 2Re{b"j~,(lsd6)2}-llsd6122 Re{gjj; ei(e+s*)}+O(g), (4.13) 

ei('+'*)} + O(B,), (4.14) 
ax, 

e-i(s+s*)} + O(E,) . (4.15) 

We will refer to the quantity in square brackets in (4.2) as the 'bilinear Lagrangian 
density' and denote it by the symbol L. If we define a phase-averaging operator 

1 
( > b y  
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then, we may calculate (L) from (4.13), (4.14) and (4.15) and obtain 

( L )  = 2Re{i}, 

where 

31 

4.3. Phase-averaged variational principal 
Following the general scenario described by Whitham (1974, p. 393)' we now propose 
the ' phase-averaged bilinear variational principle ' 

6 JJJD Jt: 2 Re {i} dt dx, dx, dx, = O(erf, 2, ew), 

where 

(4.17) 

(4.18) 

is defined by (4.16). The explicit dependence of on xi and t is due to the dependence 
of U,  and U, on those variables and the fact that U,  and U,  appear in the definition 
(3.8) of the operator lsd C ). 

In (4&7), we treat b,, &,, 8, &, and 8 as independently variable. We suppose that 
and &, are given prescribed values on the planes x2 = 0 and x2 = h and that 6 is 

given prescribed values on the cylinder x: +xi = R2 (for all t satisfying to < t < t , )  
and at the temporal endpoints to and t ,  (for all x ~ E D ) .  

Before writing the Euler equations corresponding to the above variational principle, 
we will establish a notation convention to avoid ambiguity in the interpretation of 
partial-derivative symbols. The convention will apply whenever a derivative of a 
composite function (i.e. a function of a function) is taken and both an 'implicit' 
interpretation (involving a chain-rule expansion) and an 'explicit ' interpretation 
(involving only differentiation with respect to the explicit dependence of the 
operand) is possible. We will avoid differentiation of 'functions of functions of 
functions ' or other examples of multiple composition. 

Thus, subscripts will be employed to denote 'explicit ' partial derivatives, e.g. 

and 'complete ' partial-derivative symbols will be employed to denote 'implicit ' 
partial derivatives involving the full-chain-rule expansion, e.g. 

a i  aL aL 
ax,' ax,' at * 

- - -  

The same convention will be retained in writing derivatives of the 'dispersion relation 
function' (cf. 34 below). 

The Eulerequations for the variational principle (4.17) may be written immediately. 
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Some of the formulas which arise during their derivation will be useful for later 
reference, however, so we include them here. We have 

or 

+L(-w/at) a( -$) +i(ao/az,)  8 (4.19) 

The quantity in the last line of (4.19) may be rewritten according to the identity 

The rescaling of the factors on the right-hand side of (4.20) has been made so that 
the individual terms in the coefficient of S(cw 8) will be nominally bounded as E ,  + O .  
Without the factor e;l, terms such as 

(which consist of a propagation space derivative of a slowly varying quantity) would 
vanish as ew + O .  In  such a situation! the Euler equation corresponding to independent 
variations of 8 would reduce to a triviality, since it would then state that the sum 
of three terms which are individually zero is zero. 

The Euler equations for the variational principle (4.17) now become 
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4.4. The homogeneous boundary-value problem 
From the above Euler equations and the bilinear dependence of z upon the script 
and the italic systems of vafiables, we note that the system (4.21), (4.22) [after the 
specific formula (4.16) for L has been inserted] will not involve any of the script 
variables. The system (4.21), (4.22) is, therefore, uncoupled from the system (4.23), 
(4.24). Furthermore, the only derivatives appearing in (4.21), (4.22) are derivatives 
with respect to 2,. Of the four variables involved, namely 

il, b",, i3, 5, 
the variables K1 and g3 appear only in undifferentiated form and may be eliminated 
algebraically. When such an elimication is carried out, a two-by-two matrix 
differential system for the variables b, and 5 results. Either of these two variables 
may be eliminated by cross-differentiation leaying a second-order ordinary differ- 
ential equation for the other. The equation for b,, for example, is found to be 

2 [ (lsd /3)2 $1 - [ ( g), + (gy] (lsd 0)' b", = o(Cr~, €:, €,+,). (4.26) 
ax2 

If, instead of starting with the variational principle (4.2), we had started from the 
alternative variational principle (4.8), then, after insertion of a trial solution in the 
form of a slowly varying wavetrain and phase averaging, the resulting Euler equation 
would have been the above equation. 

Indeed, if the slowly varying wavetrain (4.12a) (with i = 2) were inserted into the 
small disturbance equation of motion in the form (4.6), the same equation would 
follow. The above equation is one way of writing the Rayleigh stability equation. 

Introducing the notation for the (complex) wavenumber vector 

ae ae 
1 ax, 3 ax, 

ae 
at 9 

k =  k,2",+k32^3EZA - + 2  - 

and the (complex) frequency 

6) -- 
I 

the above equation for b, becomes 

(4.27) 

(4.28) 

which is similar to the 'displacement' form of the Rayleigh stability equation 
employed, for example, by L. N. Howard in the derivation of the 'semicircle 
theorem' of parallel-flow stability theory (cf. Drazin & Howard 1966, equation 
(2.23)). The only difference between the above equation and the one employed by 
Howard is that we have here allowed for non-unidirectionality of the horizontal 
velocity profile. 
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A completely analogous sequence of results may be derived from the set of Euler 
equations (4.23), (4.24). Specifically, we find that the system (4.23), (4,24) involves 
only the script variables. A two-by-two matrix differential system for 8, and 6 may 
be obtained by algebraic elimination of e", and j3. Finally, a single equation for <2 

follows by cross-differenfiation and is found to be identical with (4.26) with b, 
replaced by z2. 

We now consider solutions for i2 and Z2 subject to the homogeneous boundary 
conditions 

(4.29) 

Since i2 (or z2) satisfies a homogeneous differential equation subject to homogen- 
eous boundary conditions, non-trivial solutions will exist only for special combina- 
tions of the parameters. We have, therefore, a single dispersion relation applicable 
to the boundary-value problem for either c2 or e", of the form 

(g2,e",) = (o ,o)  at x2 = 0, x2 = h. 

(4.30) 

which will be more useful in what follows. 

5. Conservation of wave-action density 
We let the symbol 9' denote the cross-space integral of Z, i.e. 

We can show that the order of magnitude of 9, evaluated for solutions of the Euler 
equations (4.21)-(4.24) subject to the homogeneous boundary conditions (4.29), is as 
small or smallerJhan terms already neglected in the following way. From the bilinear 
dependence of L upon the script and italic variables [cf. (4.16)], we have 

or 

It follows from the Euler equatiom (4.21)-(4.24) that the quantities in the second 
line and the coefficient of 6, in the first are O(erf,e&ew). Integrating over the 
' cross '-space and applying the homogeneous boundary conditions (4.29), we obtain 

JOh Zdx, = 9 = O(erf, e i ,  6,) (5.2) 

as stated. Let the symbol 6t( ) denote variations within the family of solutions to 
the full two-point boundary-value problem. Within th@ family, the Euler equations 
(4.21)-(4.24) are satisfied and the coefficients of 6b,, ad,, 6j5, and 66 in the identity 
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(4.19) are of higher order under approximations already stated. Integrating this 
(simplified) identity over the cross-space and applying the boundary conditions 
(4.29), we get 

which, in view of (5.2), implies that 

82 = yw 6'W -k z k ,  6'kl -k 2 k 3  8tk3 -k o(€,f, €;, €w), 

sw atw -k y k l  6tkl + z k 3  S'k, = o(€,f, €;, E w ) .  

Applying the St( ) operator to (4.31), we get 

atw = Qk,  S'k, +Qk3 iYk3 -k o(€,,, €q,  €w). 

Substituting into the preceding equation to eliminate 8(0) results in 

(zkl -k ' k l  yw) (2k3 + o k 3  2,,) atk3 = O(%, €;, ew). 

From arbitrariness of 8tkl and atk3 we have 

yrkl = - zw + O(%f, €;? 8w 1, j { I 3) (5.3) 

The conservation law we desire is obtained by integrating the Euler equation (4.25) 
over the cross-space and multiplying by 8, to get 

or, in view of (5.3), 

This equation is identical in form to Whitham's law of conservation of wave-action 
density (cf. Whitham 1974, pp. 393-394). Equation (5.4) identifies Qk, as a factor of 
proportionality between the density and flux of a conserved quantity. It is, therefore, 
the velocity of propagation of 64w. 

5.1. Evolution equations for the wavenumber and wave action density fields 
Several far-reaching results may be derived directly from the definitions of k and w 
as derivatives of the phase function O(x, t )  [cf. (4.27) and (4.28)] and the dispersion 
relation (4.31). In  the following, we will retain the notation convention described in 
the paragraphs between (4.18) and (4.19) above with regard to the interpretation of 
the meaning of partial-derivative symbols when both an 'implicit' and an 'explicit' 
interpretation of partial derivatives of Q(k, ,  k,, z,, z3, t )  with respect to x l ,  x3 and 
t is possible. Such a convention is necessary to avoid ambiguity since k, and k, depend 
on these same variables of differentiation. 

A partial differential equation for kj  may be derived by writing the mixed partial 
derivative of 8(x, ,  x3, t )  with respect to x, and t in two ways, one with k, for the 'inner' 
derivative and the other with - w  for it. From (4.27) and (4.28) we deduce that 

akj aw 
at axj * 

- = -_ 

Substituting the dispersion relation w = Q(k, ,  k,, x,, x3, t ) ,  we get 
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which is a nonlinear equation of evolution for the unsteady wavenumber field 
k,(xl,  x3,  t ) .  Equation (5.5) may be solved numerically by a step-by-step integration 
in time subject to the initial conditions 

ka(xl,  x3,  0 )  =ti(.,, 2,) = given, i E { 1,3}. (5.6) 

Equation (5.4) for the wave action density may also be written as an equation of 
evolution. We have, from (5.4), 

This equation may also be solved numerically by a step-by-step integration in time, 
an obvious procedure being to carry out the solution of (5.5) and (5.7) simultaneously 
subject to the initial conditions (5.6) for k, and the initial condition 

S u ( X 1 ,  X 3 , O )  = yu&, 2 3 )  = given, (5.8) 

for Yu. One advantage of the above procedure for defining the unsteady evolution 
of Yu is that the entire calculation can be carried out with real position coordinates 
( x l ,  x3) .  This advantage is offset by the disadvantage that further analytical progress 
is difficult to make and numerical results, if obtained, would be idiosyncratic to a 
particular set of initial conditions. 

5.2.  A n  alternative approa,ch involving the method of characteristics 
The following notation convention will permit greater economy in the subsequent 
mathematical development : if a Greek letter subscript appears twice, it indicates 
summation over odd indices from 1 to 3. With this convention, (5.5) may be written, 
with the aid of the chain rule, in the form 

but 

so 
ak, ak .  

i E { 1,3}. -+a -= -Q  xi ' 
at k v a x ,  

(5.9) 

For general dispersion functions, i t  is not possible to solve the above system by 
the method of characteristics in a way that ensures real position coordinates ( x l ,  x , )  
at all points of a single characteristic curve. By considering the whole (multiple- 
parameter) family of characteristic curves, however, it is possible to define within the 
set of solution points of that family a physical subset in which x l ,  x ,  and t are all real. 
Indeed, if the initial-data function on the right-hand side of (5.6) admits an analytic 
continuation in a neighbourhood of the real axis of each of its two arguments, then 
the combinations of the variables x l ,  x, ,  k, ,  k ,  and t within the physical subset defined 
above is reconcilable with the solution of the evolution equation (5.5) for 
k, = k, (x l ,  x3 ,  t )  as we will now show. The present approach is similar to the one 
followed by Itoh (1981) in the case of one-dimensional propagation. 

Let (cl, Q) be complex position coordinates. We rewrite (5.9) in the form 

(5.10) 
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and construct the characteristic curves so that the differential operator on the 
left-hand side reduces to an ordinary derivative with respect to time. Thus, we 
require that 

and hence, that 

(5.11) 

(5.12a, b )  

which are complex forms of the so-called ray equations of kinematic wave theory (cf. 
Whitham 1974, 511.5; or Lighthill 1978, $4.5). The corresponding form of the 
dispersion relation is 

bJ = w,, k3, c,, Q, t), (5.13) 

so the system (5.12) forms a closed set. We may write the general solution of (5.12) 
symbolically in the form 

& = z$(t; cO;olt f 3 ,  ICO19 k03), k, = Kt(t; 6 1 ,  c03, k013 k03)? (5.14a, b)  

where the quantities with subscript ‘0’ are the values at t = 0 of the corresponding 
unsubscripted quantities. We suppose that a relationship between kod and co, exists 
of the form 

k O l  =ft(&l1?63) ,  iE{173}7 (5.15) 

where the function on the right-hand side is the analytic continuation of the 
initial-condition function introduced in (5.6) above. Eliminating k,, and ko3 from 
(5.14a, b) by means of (5.15) induces a functional dependence of the left-hand side 
quantities upon the three quantities sol, Co3 and t, i.e. 

ct = Z,(Co,, Yo39 0, ( 5 . 1 6 ~ )  

k, = &(COl, d s ,  t ) ,  i E (193). (5.16b) 

In  the above system, there are four equations relating seven quantities and so only 
three of them are independent. Taking C1, 5, and t to be the independent ones, we 
may, in principle, express k, in the form 

k, = N(Cl,C3>tL iE{1,3} (5.17) 

Following Itoh (1981), we assign physical meaning only to the subset of points related 
by (5.17) in which 

Re(&) = z,, Im(f)  = 0, i ~ { 1 , 3 }  (5.18) 

so that k, = mz,, 53, t )  (5.19) 

in this physical subset. 

characteristics in an analogous way. The complex form of (5.4) is 
The solution for the wave-action density may be found by the method of 

a a 
- (%) +- (Qk, -a = %I, e;, GI. 
at a& 
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Differentiating the product on the left and substituting (5.1 l) ,  where possible, we get 

(5.20) 

where the last equality follows from an application of the chain rule. 
One simple approach to the solution of (5.20) is to express the quantity 

in terms of Q and t by means of (5.17) and then express the quantity 

in terms of [,,, co3, k,,, k,, and t by means of (5.16a, b) .  Equation (5.20) could then 
be written in the form 

1 d 9  
YW dt 
-2- - a(t; &l1, gO3, k O l ,  ' 0 3 )  + o(',f, ' q 9  'k)? 

which is of ' variables-separable' type along a characteristic curve. 
We will not follow this simple approach for two reasons. First, insights into the 

development of singularities of Sw along the integration path are difficult to reach 
by this method. Secondly, there would seem to be practical advantages to a method 
that calculates the distributions along a characteristic of all the variables one wants 
in a single integration rather than the sequence of integrations that the above 
approach requires. 

Following Hayes (19706) we will derive equations for the rate of change of a k , / a S  
along a characteristic by applying the operator a( )/CIS to (5.10) and expanding the 
resulting derivatives by the chain rule. We get 

In view of the definition (5.11) of d( )/dt, we may write this equation in matrix 
notation in the form (cf. Hayes 1970b, equation (19)) 

d 
dt 

(5.21 a) -A=-ABA-CA-AC*-D 

where 

(5.21d, e )  
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and where the symbol [ IT denotes the transpose of the matrix operand. In  the same 
notation, (5.20) takes the form 

(5.22) -- d9w - - yw tr (AB + C) + 0 ( E r f ,  G ,  €:I 
dt 

where the symbol t r (  ) 
The initial condition 

We have, therefore, 

denotes the trace of the matrix operand. 
for the matrix A must be consistent with (5.15) and (5.21b). 

(5.23) 

We suppose that the initial condition (5.8) for Pw has an analytic continuation of the 
form 

9w(c1;l, c 3 ,  = %,0([017 <03) = given* (5.24) 

Now the 2 x 2 matrix A is symmetric [as follows from the equation immediately 
above (5.9)].  The matrix equation (5.21 a) is equivalent to three independent scalar 
equations. The system consisting of the four scalar equations (5.12a, b), the three 
scalar equations (5.21), and the scalar equation (5.22) is, therefore, a system of order 
eight for the eight unknowns 

The general solution for the first four quantities is given by (5.14a,b). For the 
remaining four, we may write 

(5.25 a )  

(5.25b) 

(5.25 c) 

=qw = Y i ( t ;  cot, ko,,Ao, %o). (5.25 d) 

Substitution of the initial conditions (5.15), (5.23) and (5.24) to eliminate k,,, A, and 
Ywo from the right-hand sides induces a functional dependence of the form 

(5.26a, b )  

The system (5.16a, b ) ,  (5.26a, b) is equivalent to eight scalar equations relating eleven 
scalar quantities and so only three of these quantities are independent. Taking h, 
Q and t to be the independent ones [as we did before, in the paragraph between (5.16) 
and (5.17)], we may write 

ak .  

ak* - 
"s 
- - &(601, 5 0 3 ,  t ) ?  2w = % , ( C O l >  6039 t) '  

= a j ( c 1 9  c37 '), 64: = y ~ ( ~ l ,  c3, t) '  (5.27a, b) 
a S  
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The physically meaningful subset of points related by these equations is the subset 
defined by (5.18),  i.e. 

- = Kij (x l ,  x3, t), Sw = S L ( x , ,  x,, t). axj 
(5 .28a,  b) 

The above solution by the method of characteristics is predicated on the availability 
of analytic continuations of all the initial-data functions and of the dispersion 
function for complex horizontal position coordinates 5, and 6. The process would fail 
if, for example, any of the requisite analytic continuations did not exist. The 
requirement that such analytic continuations exist should not pose a serious restric- 
tion on the usefulness of the method if the complex characteristics satisfy a condition 
of the form 

IIm (&)I 4 IRe (&)I, i e { l ,  3 )  (5.29) 

for the entire range o f t  over which solutions are sought. In  the next subsection, we 
will discuss a class of special cases in which the condition (5.29) holds. We will show 
that within this class the solution for Y,, may exhibit a singularity along a 
characteristic for finite time. 

5.3.  Approximate solutions when QCi and 52, are both small 

A set of conditions sufficient to ensure that (5.29) is satisfied within a time interval 
t E (0,T) are 

(i) lQ,l = O(erf), IQtl = O(arf) for all te (0, T) ( 5 . 3 0 ~ )  

(ii) for a single t = t ,  E (0, T ) .  (5.30b) 

When these conditions are satisfied, the ray equations (5.12a, b)  reduce to 

IIm (Qki)l < IRe (QJ, IIm (&)I G IRe (&)I 

(5 .31a,  b) 

showing that k, changes very little along a characteristic curve. Now Qki depends 
on the variables k,, f and t and the condition ( 5 . 3 0 ~ )  ensures that the dependencies 
upon Ct and t are weak. It follows that the right-hand side of ( 5 . 3 1 ~ )  is virtually 
constant. Equations (5.30b) then ensure that (5 .29)  is satisfied, as stated. 

Now, erf is a measure of the weakness of the dependency of background flow 
quantities such as U ,  and U,  upon the variables x,, x,  and t. Also, the dependence 
of the dispersion function w = Q(k,, k,, x,, x,, t) upon these variables is due solely to 
the appearance of U as a coefficient in the Rayleigh stability equation [cf. the 
equation between (4.28) and (4 .29) ] .  Since we have already employed the assumption 
ere < 1 in all the derivations prior to those of the preceding section, we see that 
( 5 . 3 0 ~ )  will be satisfied under approximations already stated, provided that T 5 E/Q 
[cf. (2 .3)  and (2.4)]. 

The propagation equations for A and 9,, simplify under conditions (5.30b).  We 
note that all the elements of the matrix C in (5.21 d) are O(erf) and all those of matrix 
D in (5.21e) are O(E:e). It follows that ( 5 . 2 1 ~ )  and (5.22) take the simpler forms 

and 

d 
dt 
- A  = -ABA + O(S,,), 

-w - - - Yw tr (AB) + O(s,,, e:, e$).  d S  
dt 

(5.32) 

(5.33) 
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Since A and B are symmetric, we have 

tr (AB) = tr{(AB)T} = tr{BTAT} = tr (BA), 

so (5.33) can be written 

-- d64W = - tr  (BA) + O(erp, B ~ ,  6 ; ) .  
gW dt 

Noting the identity 

we have 

Substituting (5.32) into the right-hand side to eliminate dA/dt, we get 

dA -1 

dt 
-- - B + O(e,f). 

Substituting this result into (5.34) to eliminate B, we get 

1 d64 
dt 

-0- - - tr (G A) + 0(erf, eq, e;), 

41 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

where the last equality follows from another application of (5.35). 
Hayes (1970b) has pointed out that the first term on the right-hand side of (5.37) 

is equal to the logarithmic derivative of the determinant of A with respect to t. To 
show this, we let detA denote the determinant of A and let air denote the element 
in the ith row and the j t h  column of A. Then detA is a function of the various aii. 
By application of the chain rule, we have 

d a det A da 
- (detA) = -21 
dt i , j  a%, dt ’ 

where the sum is over all the elements of A. But 

a detA ~- = A ,  
8% 

is the cofactor of the element aU in A and, by Cramer’s rule, A,/det A is the element 
in the j th  row and the ith column of A-l. It follows that 

detA dt 

as stated, and (5.37) takes the integrable form 

(det A) + O(erf, ep, e&) 
1 d 9  -A=-- 
PW dt detA dt 

(5.38) 

whence 
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Now the function B in (5.36) depends only on the solutions of the ray equations 
(5.31 a, b )  and the time and is independent of the elements of A. It follows from (5.36) 
that 

and (5.38) takes the form 

(5.39) 

This approximate solution invites comparison with certain well-known results 
regarding the far-field dispersed wave pattern in a uniform medium. If @o(k) is the 
Fourier transform of the initial distribution of some dependent variable Q)(x, t ) ,  then 
the method of stationary phase may be employed to derive the result (cf. Whitham 
1974, equation (1  1.41)) 

21c in 
Q)(x,t) - &(k) (t> (det B)-t exp[i(k.x--SZ(k)t+lJ], 

where xt/t = a,!, n = number of dimensions in the propagation space, y = a real 
constant determined by the number of path rotations employed in the stationary- 
phase algorithm. In the case n = 2, we find 

exp [ - 2 Im { k - x -  Q(k)  t } ]  
det (Bt) 

pp’* - Go g41c2 (5.40) 

Comparing the form taken by (5.39) in the limit t + for a uniform steady medium 
with the above result, we see that the quantity 9w/9w,, represents the factor in the 
complete expression for the square amplitude associated with amplitude changes by 
dispersion, i.e. Yw does not display any effects due to exponential amplification or 
decay along the ray. This feature of 9u is expected from its definition as a bilinear 
product of the ‘script’ and the ‘italic’ trial solutions in ( 4 . 1 2 ~ 4 ) .  If either of the 
sets of variables ( b l , p )  or (b1, b) represents an amplified mode, then the other will 
represent a damped one. The use of a bilinear Lagrangian density causes their 
respective exponential amplification rates to cancel. We will return in $6  to the 
question of how to reinsert the appropriate exponential amplification factor to get 
an expression for the ‘observed’ square amplitude of an amplified mode. 

The well-known far-field ‘caustics’ are the curves along which the determinant in 
the denominator of (5.40) vanishes. The equations of kinematic wave theory are not 
valid on the caustics themselves but do properly indicate their location. Careful 
analysis involving the use of the Airy function (cf. Lighthill 1978, 84.11) show that 
the actual square amplitude on the caustic is finite, as expected, the main effect of 
the caustic being to change the negative power oft  in the formula for qxp* from -2  
to some other negative number. 

Equation (5.32) may be regarded as a simple example of a matrix Riccati equation. 
Hille (1969, appendix C.3) presents an interesting discussion of matrix Riccati 
equations in general and establishes several analogies between the kinds of singula- 
rities that occur in the matrix Ricatti equation and those that occur in the more 
familiar scalar Riccati equation. The concept of a movable singular point plays an 
important role in the theory. A singularity in the solution of a nonlinear ordinary 
differential equation is called ‘movable’ if its location in the space of the independent 



Amplitude propagation in trains of instability waves 43 

variable is dependent upon the initial conditions and can be placed anywhere in that 
space by suitable choice of those initial conditions. If, for example, a = a(t) is a 
solution of the scalar equation 

da 
dt 
_ -  - - ba2, 

(where b is a constant), then the solution for a( t ) ,  subject to the initial condition 

a = a ,  a t t = O  

is a = (ail  + bt)-', 

which is precisely analogous to the matrix equation between (5.38) and (5.39). The 
function a(t) has a pole at  t = - @a,)-' whose location can be placed anywhere in the 
interval ( -  00,co)  by appropriate choice of a,. 

Movable singular points in the solution for the matrix A and, hence, in the solution 
for Yw, will exist whenever the determinant in the denominator of (5.39) vanishes. 
Such movable singular points would no more represent infinitely large values of real 
physical quantities than the far-field caustics do. As was the case with the far-field 
caustics, however, kinematic wave theory provides a clue to the locations of 
interesting phenomena, particularly those characterized by untypically large ampli- 
tudes. If we approximate the matrix B by its initial value B, along a ray and 
introduce the notation h = - l/t, then (5.39) may be written 

If the matrix product A, B, [whose elements are approximately the elements of the 
group velocity-gradient tensor (aQkJaX,),if E , ~  4 11 has a negative real eigenvalue for 
a particular ray, then that eigenvalue is minus the reciprocal of the time when that 
ray would pass into a near-field movable singular point. 

Such near-field focii associated with non-uniformity of the initial conditions must 
be well known to people who frequently apply kinematic wave theory. The author 
is unaware of any discussion of them in the context of shear-flow instability waves, 
however. Theories of laminar-turbulent transition and of turbulence maintenance in 
fully developed turbulent flows might well profit from consideration of such 
singularities. 

5.4. On steady solutions of the equations for k, and 2* 
A third type of focus, studied in detail by Landahl (1972) and Itoh (1981) deserved 
mention in this context. If a reference frame can be found in which the background 
flow velocity profiles are stationary in time, then steady-flow solutions of the 
equations for k, and Yu satisfying 

1- w w  - - 0, - - 0, 
ak. 
at at 

(5.41 a ,  b )  

may be possible. The reference frame in which the above equations hold may, of 
course, be moving relative to the fluid particles at the wall elevation. In the case 
where the above two equations hold, specification of initial data in the form (5.6), 
(5.8) is inappropriate. Rather, initial data should be specified along an 'inflow- 
boundary ' contour r described, say, by an equation of the form 

x1 = constant on r 
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If ( 5 . 4 1 ~ )  is substituted into the equation immediately before the wavenumber 
evolution equation (5.5), we get aw/axj = 0, which implies that  w is a function of time 
only. On the other hand, if the background-flow velocity profiles are stationary in 
time, then the dispersion relation reduces to 

w = QW,? k,, 21, x3) 

from which i t  follows that w = wo is independent of time as well. We obtain, 
therefore, 

wo = w,, k3, x1,53). (5.42) 

For any given point on the inflow boundary contour r, the values of x ,  and x3 are 
specified, so equation (5.42) defines a relationship that must hold between the 
boundary values of the two quantities k ,  and k,. Thus, we refrain from specifying 
both of the quantities k ,  and k, independently on r. We specify instead a second 
relationship between k, and k, of the form 

fo(k , ,  k3,x3) = 0 on r, (5.43) 

which, together with (5.42), determines the boundary values of k, and k,. The 
equations for the steady wavenumber field k i (x l ,  XJ may be found by substituting 
( 5 . 4 1 ~ )  into (5.9), or, equivalently, by applying the operator a( ) / a x j  to  (5.42). The 
result is the system of equations 

(5.44) 

which may be solved, in principle. by a step-by-step integration in xi. According to  
(5.41 b ) ,  the wave-action-density conservation equation (5.4) takes the form 

(5.45) 

We suppose further that initial conditions of the form 

gu = On (5.46) 

have been specified. For the remainder of this subsection, we restrict attention to the 
case in which the system (5.42)-(5.46) has a unique solution for the functions kt(xl, x3)  
and Yw(xl, x3) in some non-trivial region of the (x,, x,)-plane neighbouring the initial 
contour r. 

If the dispersion relation and the initial-data functions are both independent of 
x,, then the problem is two-dimensional and the equation 

holds identically for all x3. This equation states that  the flux of wave action density 
in the x3 direction is independent of the x3 coordinate. It is possible to define a class 
of three-dimensional flows in which the above equation holds for one or more 
‘spanwise stations’ x3 = b = constant. We expect, for example, that  such spanwise 
stations will exist if the flow is periodic in the x3 direction or if the flow has a 
longitudinal plane of symmetry. This class of three-dimensional flows is the one 
considered by Landahl (1972). On the line x3 = b,  i t  follows from (5.45) that 

1 
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so 9w becomes singular at a point where the denominator on the right vanishes. This 
is Landahl’s ‘breakdown’ criterion expressed in a reference frame where the flow is 
stationary. Landahl (1972) argued that the onset of violent small-scale secondary 
motions in the experiments of Klebanoff, Tidstrom & Sargent (1962) could be 
accounted for by application of the above criterion. In his original work on near-field 
focusing and in a subsequent analysis (Landahll982) of the dynamics of wavetrains 
and packets in both the near and far fields, Landahl has restricted attention to the 
case when the inequality 

IIm (%*)I 4 IRe ( Q k J  

holds. The present derivation recovers Landahl’s breakdown criterion without 
imposing this restriction. 

6. Discussion 
6.1. ‘Observed’ square amplitude 

In  the preceding section, we have tacitly regarded 9,, as a square-amplitude measure. 
As the discussion in the paragraph following (5.40) indicates, however, the observed 
square amplitude of an amplified wavetrain would contain gw as a significant factor 
but not the only factor, since Yu does not contain information about exponential 
growth or decay. Fortunately, the exponential growth factor is very simple to 
reinsert. By inspection of the trial solutions (4.12a&), we see immediately that if 
either of the sets of variables (b, ,p) or (ht,  #z) represents an amplified wave, then the 
other represents a damped one. Suppose, for definiteness, that the set (b , , p )  
represents the amplified wave. Then, letting 

8 = Re{8}+i Im{8} 

we see that the exponential amplification factor in the variables (b , , p )  will be 

exp [ - Im {O}] .  

A natural measure for the observed square amplitude A’ of an amplified wave which 
allows for both exponential amplification and amplitude changes due to dispersion 
and focusing is 

(6.1) A2 = 9w exp [ - 2 Im {O}] .  

Eliminating gw between (6.1) and (5.4), we obtain a ‘non-conservation’ law for A’ 
of the form 

= 2A2(Im{Q}-Qk,Im{El}-Qk~Im{k,})+O(~rf,~~,~~), (6.2) 

which is similar to equation (32) of Landahl (1982). We remark that this equation 
is also satisfied by the quantity pp*  in (5.40), i.e. the square-amplitude measure 
normally considered in analyses of the far-field wave pattern by the method of 
stationary phase. 

The decomposition of the square amplitude A2 into a part zw associated with 
dispersion and focusing, and another part exp ( -  28,) associated with exponential 
amplification is convenient. There is a deeper significance of this decomposition 
which deserves mention, however. We employed the bilinear variational principle 
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(4.2) in combination with the trial solutions ( 4 . 1 2 ~ 4 )  in order to ensure that the 
exponential amplification factors of the trial solutions would cancel upon substitution 
into the bilinear Lagrangian density, which then depended only on the derivatives 
of 8 and not on the undifferentiated form of 8. Each independently variable quantity 
in the Lagrangian density function will, in the application of the variational calculus, 
yield a corresponding Euler equation. Variables in the Lagrangian density which 
appear only as derivatives give rise to Euler equations in the form of conservation 
laws, and conversely, as pointed out in the book by Goldstein (1980,s 12.4) who refers 
to such variables as ‘cyclic’. 

If, instead of applying the bilinear variational principle (4 .2) ,  we had attempted 
to apply the ‘quadratic’ principle (4 .1)  and had substituted into it only the amplified 
trial solutions (4.12a, b ) ,  we would have encountered two difficulties. First, the 
phase-averaged Lagrangian’ density would contain the factor exp ( - 20t) so that 8 
would be ‘non-cyclic’ and would not give rise to an Euler equation in the form of 
a conservation law, Second, it is not clear how to interpret the derivative of the real 
quantity exp ( - 28,) with respect to the complex quantity 8 which one must employ 
in the derivation of the Euler equation corresponding to independent variations of 

In summary, the use of a bilinear variational principle with trial functions of 
opposite exponential amplification properties seems to be necessary if the variational 
formalism is to be unambiguous and, in particular, if the resulting Euler equation 
for gW is to have the form of a conservation law. Such a conservation law can be 
derived even if the observed square amplitude .A2 obeys a non-conservation law such 
as (6.2). 

8. 

6.2. Comparison between the results of the present theory and those of other 
investigators 

The present work is an analysis of the dependency of amplitude, frequency, 
wavenumber and other parameters of a train of shear-flow instability waves upon 
the initial distributions of those parameters and upon slow variations of the 
background medium through which they propagate. Viewed in these terms, the 
problem addressed in this work is comparable with the problems addressed by 
Nayfeh (1980) and Itoh (1981). 

Though there is considerable overlap between the sets of assumptions employed 
in these three works, no one of them addresses a problem that is, strictly speaking, 
a special case of any other. In Itoh’s problem, the analysis is restricted to 
two-dimensional flow. Slow streamwise variations and a limited kind of time 
dependency of the background flow are taken into account, however, as are the 
effects of viscosity. The time dependency of the background flow is limited to the 
kind that can be removed by an appropriate choice of translating reference frame, 
leaving a steady-flow problem of the sort considered in $5.4 above. 

In Nayfeh’s problem, the background flow is assumed to be steady in time in a 
reference frame fixed to the wall. Nayfeh’s analysis allows for independent functional 
dependencies of the horizontal velocity components U ,  and U ,  upon the cross-stream 
coordinate x2, a complication that we will henceforth refer to as ‘skewness’ of the 
background-flow profiles. Slow variations of U ,  and U, with respect to the horizontal 
space coordinates are also allowed for, as are the effects of viscosity. The assumption 
of strict steadiness of the background flow leads Nayfeh to attribute horizontal 
non-uniformities of the background flow [cf. the last sentence before equation (8) of 
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Nayfeh 19801 to the effects of boundary-layer growth and thus to  equate the small 
parameter E that  measures horizontal non-uniformity of the background flow to the 
reciprocal of the Reynolds number R. I n  this way, the steady-background-flow 
assumption implies that  the background flow becomes progressively ‘flatter’ as R 
tends to infinity. 

In  the present work, skewness and slow horizontal non-uniformities of the 
background-flow profiles are allowed for, as in Nayfeh’s problem, but viscosity is 
ignored. Thus, in contrast to  Nayfeh’s problem, horizontal non-uniformities of the 
background flow may not be attributed to  finite-Reynolds-number effects. They 
must, instead, be attributed to a temporally evolving larger-scale structure in the 
background flow. 

All three theories reduce to the same problem when one restricts attention to 
two-dimensional inviscid flow and ignores streamwise variations of the background 
flow. Even under such an idealization, one is free to prescribe spatially non-uniform 
initial distributions of the parameters of the disturbance wavetrain and to  deduce 
from the law of conservation of wave action density the possibility of far-field 
caustics and near-field movable singularities of the sort discussed in $5.3 above. 

Equation (5.4) above is our mathematical statement of the law of conservation of 
(bilinear) wave-action density for shear-flow instability waves and is of exactly the 
same form as equation (140) of Nayfeh (1980). I n  an analysis of the instability of 
plane Poiseuille flow, Itoh (1980) derived the same conservation law (cf. equation 
2.18 of that paper). In his later work, however, Itoh chose to write his amplitude- 
propagation law in a different form, namely as a formula for the rate of change of 
the Jirst power of the amplitude [cf. Itoh (1981), equation 2.131. The question 
naturally arises as to whether the various second-order amplitude measures, whose 
conservation laws are derived by Nayfeh, Itoh and in the present work, are 
mathematically equivalent. 

The answer is no, for reasons that we will elaborate on presently. Given that not 
all second-order amplitude measures are the same, the next question that arises is 
whether more than one second-order amplitude measure can represent a conserved 
quantity. The answer to the latter question is yes and the variational formalism 
provides a very clear indication of why. 

if,  in Nayfeh’s equations, we substitute E = 1/R and set R = 00, then the 
background-flow velocity profiles take the form 

and the small-disturbance equations of motion [Nayfeh’s equations (13)-( i s ) ]  take 
the form 

(6 .4a)  

(6.4b) 

where the density is absent owing t o  Nayfeh’s use of non-dimensional variables. 
These equations are equivalent to (2.9a, b )  above under analogous assumptions 
regarding horizontal uniformity of the background flow. Nayfeh’s wave action 
density is a bilinear expression involving solutions of the above system as one factor 
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and solutions of an adjoint system as the other. Substituting E = 1/R = 0 into 
Nayfeh's equations (129)-( 132), the adjoint system becomes 

(6.5b) 

where the star denotes the adjoint system of variables. Introducing travelling-wave 
trial solutions of the form 

p = Ayi;eie, ( 6 . 6 ~ )  

ui = A.ii,eie i ~ { 1 , 2 , 3 } ,  (6.6b) 

( 6 . 6 ~ )  

Ut * - - A*.iifeis*, i ~ { 1 , 2 , 3 } ,  (6.6d) 

p* = A*** p e  io* 

and defining the wavenumber components and frequency by 

ae* ae 
ax, axi - ki = --, i ~ { 1 , 3 }  _ -  

( 6 . 7 ~ )  

(6.7b) 

Nayfeh arrives at a wave-action-density conservation law similar to (5.4) above but 
with the quantity 

AA* Iom .iij iijl* dx, (6.8) 

in place of Y,,. 
The definitions of frequency and wavenumber that apply to the ' starred ' and 

' non-starred ' variables of Nayfeh are completely consistent with those that apply 
to the 'script' and 'italic' variables in the present work. 

The corresponding formula that relates wave-action density in the present work 
to an integral over the mode shape functions may be derived from (4.16), (5.1), and 
the notational definitions (3.8), (4.27) and (4.28). Setting h = 00 in (5.1), we obtain 

-% = S," 2(w - k, U ,  - k, U3)  (ix3 Zj) dx,. 

The quantity pYw has the dimensions of energy per unit of horizontal area divided 
by frequency. Although Nayfeh's equations are written in non-dimensional form, one 
may show that p times the dimensional counterpart of the quantity (6.8) would have 
the dimensions of energy per unit of horizontal area. On dimensional grounds, 
therefore, Nayfeh's wave-action density is not the same as ours. 

From the standpoint of mathematical rigor, there is nothing wrong with Nayfeh's 
derivation of the conservation equation satisfied by the quantity (6.8). Indeed, we 
will show below how the same conservation law can be derived by a variational 
method. From the standpoint of physical interpretability, however, the need to 
employ solutions of the adjoint system of equations (which have no apparent 
physical meaning) as a factor in the resulting expression for the wave action density 
can only be viewed as a disadvantage. 

It often happens that a system of equations that is not self-adjoint may be 
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transformed to an equivalent system which is self-adjoint by a simple change of 
variables. Such is the case in the present work where the change of variable (3.11) 
transforms the system (2.9a,b) (which is not self-adjoint) to the system (3.10a,b) 
(which is). The system ofequations (4.3a, b) satisfied by the variables (bt, #z) is identical 
with the system (3.10a, b) satisfied by (bi,p). Neither system of equations is any more 
difficult to interpret physically than the other, both being transformed versions of 
the small-disturbance equations of motion. In this sense, the definition of wave action 
density employed herein is less vulnerable to criticism on the grounds of physical 
opacity than is Nayfeh’s definition. 

It is appropriate to note, however, that the self-adjointness of the small-disturb- 
ance equations of motion when written in terms of the variables (b,,p) disappears 
when viscous effects are included. One of the main goals of this work, was to derive 
the law of conservation of wave action density in shear waves (which are non- 
conservative even when viscous effects are ignored) in a form which involves 
physically meaningful quantities for all the factors in 9@. The difficulty of accomp- 
lishing this task in the viscous case is what motivated us to restrict attention to the 
inviscid problem. 

We now return to the question of whether different second-order amplitude 
measures can satisfy similar conservation equations, specifically equations of the 
form (5.4). One of the most striking features of the derivations of the equation of 
conservation of wave action density by Hayes (1970~)  and Whitham (1974) in the 
case of conservative systems is the ability of those authors to derive the equation 
from a generic clues of variational principles rather than one which is specific to a 
particular set of partial differential equations governing one problem. The only 
conditions that must be satisfied by a variational principle to ensure that it leads 
to the law of conservation of wave-action density are: first, that the original partial 
differential equations of motion of the system admit solutions in the form of slowly 
varying wavetrains with a phase function 0(x, t) ; secondly, that substitution of trial 
solutions in the form of slowly varying wavetrains into the variational principle 
yields, upon averaging over one cycle, an averaged variational principle whose 
Lagrangian density function depends on 6 only through the first derivatives of 0 
(rather than on 8 itself or any higher derivatives of 0) ; and thirdly, that the boundary 
conditions with respect to the cross-space variables are such that the cross-space 
integral of the phase-averaged Lagrangian density function reduce to zero when 
actual solutions of the homogeneous boundary-value problem (as opposed to the ‘test 
functions ’ of variational calculus) are substituted into it. 

This algorithm for deriving the conservation law for 9u is, in its essentials, the one 
followed above to derive (5.4), and the same process may be applied to derive 
Nayfeh’s conservation law from a variational principle whose Euler equations are 
(6.4) and (6.5) above. An example of such a variational principle is 

+u, dtdV=O, (6.10) 

in which the domain D has the same meaning as described in $4.1 above and all eight 
of the quantities u,, p, u;, p*,  j ~ { l ,  2,3} are independently variable. One must also 
assume that the quantities u, and u; are given prescribed values on the cylindrical 
surface x t + x i  = constant, that makes up the horizontal extremities of D and that 
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uj and u? are given prescribed values on the surfaces x, = 0 and x, = h. The 
small-disturbance equations (6.4a, b )  follow by taking independent variations of 
each of the starred quantities, and the adjoint equations (6.5) follow by taking 
independent variations of the non-starred ones. If trial functions of the form 

u,  = 2 eit?, = p $9, uf = ,,q e-iO, p* = p’* e-iS 
9 (6.11 a-d) a $  

are substituted into (6.10), the result is 

(6.12) 

where 

The Euler equation corresponding to independent variations with respect to 8 is 
similar to (4.25) above, the only distinction being that (6.13) is the definition of z 
rather than (4.16). Letting 

ae ae ae 
ax1 ax3 

_- - at - W ,  - = k,, - = k,, 

and noting that 
ae ae ae 
at axl ax, 

1sdO -+ U, --+ U, - = - w +  u k + u k 1 1  3 3 ’  

one obtains 

Apart from the proportionality factor -i, this expression agrees with Nayfeh’s 
quantity (6.8) in the limit as h tends to infinity. The derivation of the conservation 
law for this Yw proceeds exactly as described above, thus confirming the consistency 
of Nayfeh’s result with the variational formalism employed here. 

Some discussion of the significance of the phrase ‘wave action density ’ is in order. 
‘Action’, in this context, refers to the integral in Hamilton’s principle of mechanics, 
which for a single particle, is a time integral of a Lagrangian function L = T- V ,  T 
and V being kinetic energy and potential energy of the particle. In  continuum 
mechanics, the time integral of a Lagrangian is replaced by a time-space integral of 
a Lagrangian density. There is great beauty and symmetry in the idea that a 
quantity that is ‘stationary’ in the mechanics of particles and continua should 
transform to a quantity that is ‘conserved’ in the case of wave packets and slowly 
varying wavetrains. The former quantity is related to the time integral of a 
Lagrangian density ; the latter quantity is a frequency derivative of a (phase-averaged) 
Lagrangian density. The set of variables that we have employed in the present work 
was selected, in part, to exhibit this duality between ordinary mechanics and wave 
mechanics. 

Apart from the considerations already mentioned, variational statements of the 
basic physics of a problem are often quite useful. The derivation of the differential 
equations of motion of a problem in ‘generalized coordinates ’ is often accomplished 
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more efficiently and reliably from a variational statement than by direct transform- 
ation of the differential equations in Cartesian coordinates. Some efficient numerical 
methods, such as the finite-element method, are predicated on the availability of a 
variational statement of the basic physics. It is possible, therefore, that simple 
variational statements of the physics of shear waves, such as those present herein, 
may lead to progress in numerical simulation techniques. 

The author is indebted to his collaborator, C. E. M. Hailey, and his former mentor, 
M. T. Landahl, for many useful discussions on the subject matter of this paper. 
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